TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRIAC

TLP161G

TRIAC DRIVE

PROGRAMMABLE CONTROLLERS

AC-OUTPUT MODULE

SOLID STATE RELAY

The TOSHIBA MINI FLAT COUPLER TLP161G is a small outline coupler, suitable for surface mount assembly.

The TLP161G consists of a photo triac, optically coupled to a gallium arsenide infrared emitting diode.

Zero-Voltage Crossing Turn-on

Peak Off-State Voltage: 400V (MIN.)

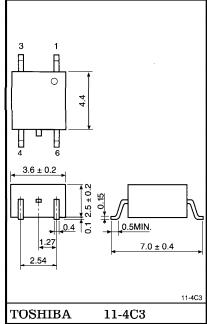
Trigger LED Current : 10mA (MAX.)

On-State Current : 70mA (MAX.)

Isolation Voltage : 2500Vrms (MIN.)

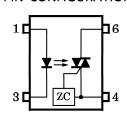
UL Recognized : UL1577, File No. E67349

TRIGGER LED CURRENT


CLASSI- FICATION*	TRIGGER LED	MARKING OF CLASSIFICATION		
	$V_{\mathrm{T}}=3V$,			
	MIN.	MAX.	CLASSIFICATION	
(IFT5)	_	5	T5	
(IFT7)	_	7	T5, T7	
Standard	_	10	T5, T7, Blank	

*Ex. (IFT5); TLP161G (IFT5)

(Note) Application type name for certification test, please


use standard product type name, i.e. TLP161G (IFT5): TLP161G

Unit in mm

Weight: 0.09g

PIN CONFIGURATIONS

- 1. ANODE
- 3. CATHODE
- 4. TERMINAL 1
- 6. TERMINAL 2

961001EBC2

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

 The products described in this document are subject to foreign exchange and foreign trade control laws.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of TOSHIBA CORPORATION or others.

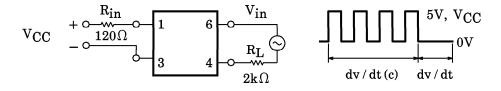
MAXIMUM RATINGS (Ta = 25°C)

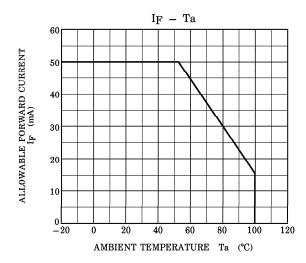
CHARACTERISTIC			SYMBOL	RATING	UNIT	
	Forward Current			50	mA	
	Forward Current Derating (Ta \ge 53°C)	$\Delta I_{\mathbf{F}} / {^{\circ}\mathbf{C}}$	-0.7	mA/°C		
LED	Peak Forward Current (100 µs pulse, 1	.00pps)	$I_{ ext{FP}}$	1	A	
	Reverse Voltage		$ m V_R$	5	V	
	Junction Temperature	$\mathrm{T_{j}}$	125	$^{\circ}\mathrm{C}$		
	Off-State Output Terminal Voltage	$v_{ m DRM}$	400	V		
يم ا	On-State RMS Current	$Ta = 25^{\circ}C$	Tm(DAG)	70	mA	
OB		$Ta = 70^{\circ}C$	IT(RMS)	40		
DETECTOR	On-State Current Derating (Ta\ge 25°C)	$\Delta I_{\mathrm{T}}/^{\circ}\mathrm{C}$	-0.67	mA/°C		
ΕŢ	Peak On-State Current (100 µs pulse,	$ m I_{TP}$	2	A		
Q	Peak Nonrepetitive Surge Current (PW=10ms, DC=10%)	ITSM	1.2	A		
	Junction Temperature	T_{j}	115	°C		
Storage Temperature Range			$\mathrm{T_{stg}}$	-55~125	°C	
Ope	Operating Temperature Range			-40~100	$^{\circ}\mathrm{C}$	
Lead Soldering Temperature (10s)			T _{sol}	260	°C	
Isol	Isolation Voltage (AC, 1 min., R.H. \leq 60%) (Note)			2500	Vrms	

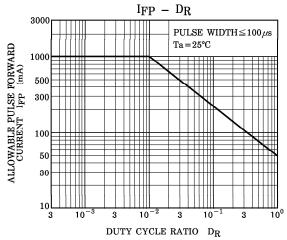
(Note) Device considered a two terminal device: Pins 1 and 3 shorted together and pins 4 and 6 shorted together.

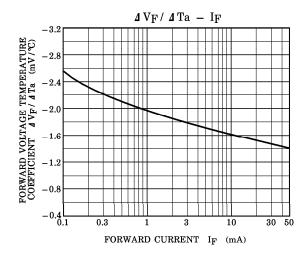
RECOMMENDED OPERATING CONDITIONS

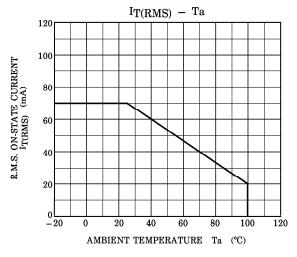
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{AC}	_		120	Vac
Forward Current	${f I_F}$	15	20	25	mA
Peak On-State Current	$I_{ ext{TP}}$	_	_	1	Α
Operating Temperature	$\mathrm{T_{opr}}$	-25		85	°C


INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)


	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$ m V_{ m F}$	$I_{\mathbf{F}} = 10 \text{mA}$	1.0	1.15	1.3	V
LED	Reverse Current	${ m I_R}$	$V_R = 5V$		_	10	μ A
	Capacitance	$\mathrm{c_{T}}$	V=0, f=1MHz	_	30	_	рF
OR	Peak Off-State Current	$I_{ m DRM}$	$V_{ m DRM}$ = 400V	_	10	1000	nA
	Peak On-State Voltage	$V_{ extbf{TM}}$	$I_{TM} = 70 \text{mA}$	1	1.7	2.8	V
CTO	Holding Current	$ m I_{ m H}$	_	-	0.6	_	mA
DETE	Critical Rate of Rise of Off-State Voltage	dv/dt	V _{in} =120Vrms, Ta=85°C (Fig.1)	200	500	_	$V/\mu s$
	Critical Rate of Rise of Commutating Voltage	dv / dt (c)	V_{in} =30Vrms, I_T =15mA (Fig.1)	_	0.2	_	V/μs


COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	I_{FT}	$V_{T}=3V$	_	5	10	mA
Inhibit Voltage	$ m v_{IH}$	I _F =Rated I _F T			40	V
Leakage in Inhibited State	$I_{ m IH}$	I_F =Rated I_{FT} V_T =Rated V_{DRM}	_	100	300	μ A
Capacitance (Input to Output)	$C_{\mathbf{S}}$	$V_S=0$, f=1MHz	_	0.8	_	pF
Isolation Resistance	$R_{\mathbf{S}}$	$V_S = 500V, R.H. \le 60\%$	1×10^{12}	10^{14}	_	Ω
		AC, 1 minute	2500	_		3 7
Isolation Voltage	$BV_{\mathbf{S}}$	AC, 1 second, in oil	_	5000	_	Vrms
		DC, 1 minute, in oil		5000	_	Vdc


Fig.1 dv/dt TEST CIRCUIT

